
Ducktape Documentation
Release 0.7.23

Confluent Inc.

Mar 31, 2023

Contents

1 Install 3

2 Test Clusters 5
2.1 Cluster Specifications . 5

3 Run Tests 7
3.1 Running Tests . 7
3.2 Options . 7
3.3 Configuration File . 9
3.4 Output . 9

4 Create New Tests 11
4.1 Writing ducktape Tests . 11
4.2 Test Parameters . 11
4.3 Logging . 13
4.4 New test example . 13

5 Create New Services 15
5.1 Writing ducktape services . 15
5.2 New Service Example . 16
5.3 Using Templates . 17

6 Debug Tests 19
6.1 Use Logging . 20
6.2 Fail early . 20
6.3 Flaky tests . 20
6.4 Tools for Managing Logs . 21
6.5 Validating Ssh Issues . 21

7 API Doc 23
7.1 Test . 23
7.2 Services . 25
7.3 Remote Account . 27
7.4 Clusters . 28
7.5 Template . 30

8 Misc 33

i

8.1 Developer Install . 33
8.2 Unit Tests . 33
8.3 Windows . 33

9 Contribute 35

10 License 37

Index 39

ii

Ducktape Documentation, Release 0.7.23

Ducktape contains tools for running system integration and performance tests. It provides the following features:

• Write tests for distributed systems in a simple unit test-like style

• Isolation by default so system tests are as reliable as possible.

• Utilities for pulling up and tearing down services easily in clusters in different environments (e.g. local, custom
cluster, Vagrant, K8s, Mesos, Docker, cloud providers, etc.)

• Trigger special events (e.g. bouncing a service)

• Collect results (e.g. logs, console output)

• Report results (e.g. expected conditions met, performance results, etc.)

Contents 1

Ducktape Documentation, Release 0.7.23

2 Contents

CHAPTER 1

Install

1. Install cryptography (used by paramiko which Ducktape depends on), this may have non-python external re-
quirements

• OSX (if needed):

brew install openssl

• Ubuntu:

sudo apt-get install build-essential libssl-dev libffi-dev python-dev

• Fedora and RHEL-derivatives:

sudo yum install gcc libffi-devel python-devel openssl-devel

2. As a general rule, it’s recommended to use an isolation tool such as virtualenv

3. Install Ducktape:

pip install ducktape

Note: On OSX you may need to:

C_INCLUDE_PATH=/usr/local/opt/openssl/include LIBRARY_PATH=/usr/local/opt/openssl/lib
→˓pip install ducktape

If you are not using a virtualenv and get the error message failed with error code 1, you may need to install ducktape
to your user directory instead with

pip install --user ducktape

3

https://cryptography.io/en/latest/installation

Ducktape Documentation, Release 0.7.23

4 Chapter 1. Install

CHAPTER 2

Test Clusters

Ducktape runs on a test cluster with several nodes. Ducktape will take ownership of the nodes and handle starting,
stopping, and running services on them.

Many test environments are possible. The nodes may be local nodes, running inside Docker. Or they could be virtual
machines running on a public cloud.

2.1 Cluster Specifications

A cluster specification– also called a ClusterSpec– describes a particular cluster configuration. Currently the cluster
specification can express the number of nodes of each operating system that are required.

Cluster specifications give us a vocabulary to express what a particular service or test needs to run. For example,
a service might require a cluster with three Linux nodes and one Windows node. We could express that with a
ClusterSpec containing three Linux NodeSpec objects and one Windows NodeSpec object.

5

Ducktape Documentation, Release 0.7.23

6 Chapter 2. Test Clusters

CHAPTER 3

Run Tests

3.1 Running Tests

ducktape discovers and runs tests in the path provided, here are some ways to run tests:

ducktape <relative_path_to_testdirectory> # e.g. ducktape dir/tests
ducktape <relative_path_to_file> # e.g. ducktape dir/tests/my_
→˓test.py
ducktape <path_to_test>[::SomeTestClass] # e.g. ducktape dir/tests/my_
→˓test.py::TestA
ducktape <path_to_test>[::SomeTestClass[.test_method]] # e.g. ducktape dir/tests/my_
→˓test.py::TestA.test_a

3.2 Options

To see a complete listing of options run:

ducktape --help

Discover and run your tests

usage: ducktape [-h] [--collect-only] [--collect-num-nodes] [--debug]
[--config-file CONFIG_FILE] [--compress] [--cluster CLUSTER]
[--default-num-nodes DEFAULT_NUM_NODES]
[--cluster-file CLUSTER_FILE] [--results-root RESULTS_ROOT]
[--exit-first] [--no-teardown] [--version]
[--parameters PARAMETERS] [--globals GLOBALS]
[--max-parallel MAX_PARALLEL] [--repeat REPEAT]
[--subsets SUBSETS] [--subset SUBSET]
[--historical-report HISTORICAL_REPORT] [--sample SAMPLE]
[--fail-bad-cluster-utilization]
[--test-runner-timeout TEST_RUNNER_TIMEOUT]

7

Ducktape Documentation, Release 0.7.23

[--ssh-checker-function SSH_CHECKER_FUNCTION [SSH_CHECKER_FUNCTION ...
→˓]]

[--deflake DEFLAKE]
[test_path [test_path ...]]

Required Arguments

test_path=[’/home/docs/checkouts/readthedocs.org/user_builds/ducktape/checkouts/0.7.x/docs’]
one or more space-delimited strings indicating where to search for tests.

Optional Arguments

--collect-only=False display collected tests, but do not run.

--collect-num-nodes=False display total number of nodes requested by all tests, but do not run
anything.

--debug=False pipe more verbose test output to stdout.

--config-file="~/.ducktape/config" path to project-specific configuration file.

--compress=False compress remote logs before collection.

--cluster="ducktape.cluster.vagrant.VagrantCluster" cluster class to use to allocate nodes
for tests.

--default-num-nodes Global hint for cluster usage. A test without the @cluster annotation will
default to this value for expected cluster usage.

--cluster-file path to a json file which provides information needed to initialize a json
cluster. The file is used to read/write cached cluster info if cluster is duck-
tape.cluster.vagrant.VagrantCluster.

--results-root="./results" path to custom root results directory. Running ducktape with this root
specified will result in new test results being stored in a subdirectory of this
root directory.

--exit-first=False exit after first failure

--no-teardown=False don’t kill running processes or remove log files when a test has finished
running. This is primarily useful for test developers who want to interact
with running services after a test has run.

--version=False display version

--parameters inject these arguments into the specified test(s). Specify parameters as a
JSON string.

--globals user-defined globals go here. This can be a file containing a JSON object,
or a string representing a JSON object.

--max-parallel=1 Upper bound on number of tests run simultaneously.

--repeat=1 Use this flag to repeat all discovered tests the given number of times.

--subsets=1 Number of subsets of tests to statically break the tests into to allow for
parallel execution without coordination between test runner processes.

--subset=0 Which subset of the tests to run, based on the breakdown using the param-
eter for –subsets

--historical-report URL of a JSON report file containing stats from a previous test run. If
specified, this will be used when creating subsets of tests to divide evenly
by total run time instead of by number of tests.

8 Chapter 3. Run Tests

Ducktape Documentation, Release 0.7.23

--sample The size of a random test sample to run

--fail-bad-cluster-utilization=False Fail a test if the cluster node utilization does not match the
cluster node usage.

--test-runner-timeout=1800000 Amount of time in milliseconds between test communicating
between the test runner before a timeout error occurs. Default is 30 minutes

--ssh-checker-function Python module path(s) to a function that takes an exception and a remote
account that will be called when an ssh error occurs, this can give some
validation or better logging when an ssh error occurs. Specify any number
of module paths after this flag to be called.

--deflake=1 the number of times a failed test should be ran in total (including its initial
run) to determine flakyness. When not present, deflake will not be used,
and a test will be marked as either passed or failed. When enabled tests
will be marked as flaky if it passes on any of the reruns

3.3 Configuration File

You can configure options in three locations: on the command line (highest priority), in a user configuration file in ~/
.ducktape/config, and in a project-specific configuration <project_dir>/.ducktape/config (lowest
priority). Configuration files use the same syntax as command line arguments and may split arguments across multiple
lines:

--debug
--exit-first
--cluster=ducktape.cluster.json.JsonCluster

3.4 Output

Test results go in results/<session_id>.<session_id> which looks like <date>--<test_number>.
For example: results/2015-03-28--002

ducktape does its best to group test results and log files in a sensible way. The output directory is structured like so:

<session_id>
session_log.info
session_log.debug
report.txt # Summary report of all tests run in this session
report.html # Open this to see summary report in a browser
report.css

<test_class_name>
<test_method_name>

test_log.info
test_log.debug
report.txt # Report on this single test
[data.json] # Present if the test returns data

<service_1>
<node_1>

some_logs
<node_2>

3.3. Configuration File 9

Ducktape Documentation, Release 0.7.23

some_logs
...

To see an example of the output structure, go here and click on one of the details links.

10 Chapter 3. Run Tests

http://testing.confluent.io/confluent-kafka-system-test-results/

CHAPTER 4

Create New Tests

4.1 Writing ducktape Tests

Subclass Test and implement as many test methods as you want. The name of each test method must start or end
with test, e.g. test_functionality or example_test. Typically, a test will start a few services, collect
and/or validate some data, and then finish.

If the test method finishes with no exceptions, the test is recorded as successful, otherwise it is recorded as a failure.

Here is an example of a test that just starts a Zookeeper cluster with 2 nodes, and a Kafka cluster with 3 nodes:

class StartServicesTest(Test):
"""Make sure we can start Kafka and Zookeeper services."""
def __init__(self, test_context):

super(StartServicesTest, self).__init__(test_context=test_context)
self.zk = ZookeeperService(test_context, num_nodes=2)
self.kafka = KafkaService(test_context, num_nodes=3, self.zk)

def test_services_start(self):
self.zk.start()
self.kafka.start()

4.2 Test Parameters

Use test decorators to parametrize tests, examples are provided below

ducktape.mark.parametrize(**kwargs)
Function decorator used to parametrize its arguments. Decorating a function or method with @parametrize
marks it with the Parametrize mark.

Example:

11

Ducktape Documentation, Release 0.7.23

@parametrize(x=1, y=2 z=-1)
@parametrize(x=3, y=4, z=5)
def g(x, y, z):

print "x = %s, y = %s, z = %s" % (x, y, z)

for ctx in MarkedFunctionExpander(..., function=g, ...).expand():
ctx.function()

output:
x = 1, y = 2, z = -1
x = 3, y = 4, z = 5

ducktape.mark.matrix(**kwargs)
Function decorator used to parametrize with a matrix of values. Decorating a function or method with @matrix
marks it with the Matrix mark. When expanded using the MarkedFunctionExpander, it yields a list of
TestContext objects, one for every possible combination of arguments.

Example:

@matrix(x=[1, 2], y=[-1, -2])
def g(x, y):

print "x = %s, y = %s" % (x, y)

for ctx in MarkedFunctionExpander(..., function=g, ...).expand():
ctx.function()

output:
x = 1, y = -1
x = 1, y = -2
x = 2, y = -1
x = 2, y = -2

ducktape.mark.resource.cluster(**kwargs)
Test method decorator used to provide hints about how the test will use the given cluster.

Keywords used by ducktape

• num_nodes provide hint about how many nodes the test will consume

• cluster_spec provide hint about how many nodes of each type the test will consume

Example:

basic usage with num_nodes
@cluster(num_nodes=10)
def the_test(...):

...

basic usage with cluster_spec
@cluster(cluster_spec=ClusterSpec.simple_linux(10))
def the_test(...):

...

parametrized test:
both test cases will be marked with cluster_size of 200
@cluster(num_nodes=200)
@parametrize(x=1)
@parametrize(x=2)
def the_test(x):

12 Chapter 4. Create New Tests

Ducktape Documentation, Release 0.7.23

...

test case {'x': 1} has cluster size 100, test case {'x': 2} has cluster size 200
@cluster(num_nodes=100)
@parametrize(x=1)
@cluster(num_nodes=200)
@parametrize(x=2)
def the_test(x):

...

ducktape.mark.ignore(*args, **kwargs)
Test method decorator which signals to the test runner to ignore a given test.

Example:

When no parameters are provided to the @ignore decorator, ignore all
→˓parametrizations of the test function

@ignore # Ignore all parametrizations
@parametrize(x=1, y=0)
@parametrize(x=2, y=3)
def the_test(...):

...

Example:

If parameters are supplied to the @ignore decorator, only ignore the
→˓parametrization with matching parameter(s)

@ignore(x=2, y=3)
@parametrize(x=1, y=0) # This test will run as usual
@parametrize(x=2, y=3) # This test will be ignored
def the_test(...):

...

4.3 Logging

The Test base class sets up logger you can use which is tagged by class name, so adding some logging for debugging
or to track the progress of tests is easy:

self.logger.debug("End-to-end latency %d: %s", idx, line.strip())

These types of tests can be difficult to debug, so err toward more rather than less logging.

Note: Logs are collected a multiple log levels, and only higher log levels are displayed to the console while the test
runs. Make sure you log at the appropriate level.

4.4 New test example

Lets expand on the StartServicesTest example. The test starts a Zookeeper cluster with 2 nodes, and a Kafka cluster
with 3 nodes, and then bounces a kafka broker node which is either a special controller node or a non-controller node,
depending on the bounce_controller_broker test parameter.

4.3. Logging 13

Ducktape Documentation, Release 0.7.23

class StartServicesTest(Test):
def __init__(self, test_context):

super(StartServicesTest, self).__init__(test_context=test_context)
self.zk = ZookeeperService(test_context, num_nodes=2)
self.kafka = KafkaService(self.test_context, num_nodes=3, zk=self.zk)

def setUp(self):
self.zk.start()
self.kafka.start()

@matrix(bounce_controller_broker=[True, False])
def test_broker_bounce(self, bounce_controller_broker=False):

controller_node = self.kafka.controller()
self.logger.debug("Found controller broker %s", controller_node.account)
if bounce_controller_broker:

bounce_node = controller_node
else:

bounce_node = self.kafka.nodes[(self.kafka.idx(controller_node) + 1) %
→˓self.kafka.num_nodes]

self.logger.debug("Will hard kill broker %s", bounce_node.account)
self.kafka.signal_node(bounce_node, sig=signal.SIGKILL)

wait_until(lambda: not self.kafka.is_registered(bounce_node),
timeout_sec=self.kafka.zk_session_timeout + 5,
err_msg="Failed to see timely deregistration of hard-killed broker

→˓%s"
% bounce_node.account)

self.kafka.start_node(bounce_node)

This will run two tests, one with ‘bounce_controller_broker’: False and another with ‘bounce_controller_broker’:
True arguments. We moved start of Zookeeper and Kafka services to setUp(), which is called before every test run.

The test finds which of Kafka broker nodes is a special controller node via provided controller method in
KafkaService. The controller method in KafkaService will raise an exception if the controller node is not found.
Make sure to check the behavior of methods provided by a service or other helper classes and fail the test as soon as
an issue is found. That way, it will be much easier to find the cause of the test failure.

The test then finds the node to bounce based on bounce_controller_broker test parameter and then forcefully terminates
the service process on that node via signal_node method of KafkaService. This method just sends a signal to
forcefully kill the process, and does not do any further check. Thus, our test needs to check that the hard killed kafka
broker is not part of the Kafka cluster anymore, before restarting the killed broker process. We do this by waiting on
is_registered method provided by KafkaService to return False with a timeout, since de-registering the broker
may take some time. Notice the use of wait_until method instead of a check after time.sleep. This allows the
test to continue as soon as de-registration happens.

We don’t check if the restarted broker is registered, because this is already done in KafkaService start_node
implementation, which will raise an exception if the service is not started successfully on a given node.

14 Chapter 4. Create New Tests

CHAPTER 5

Create New Services

5.1 Writing ducktape services

Service refers generally to multiple processes, possibly long-running, which you want to run on the test cluster.

These can be services you would actually deploy (e.g., Kafka brokers, ZK servers, REST proxy) or processes used
during testing (e.g. producer/consumer performance processes). Services that are distributed systems can support a
variable number of nodes which allow them to handle a variety of tests.

Each service is implemented as a class and should at least implement the following:

• start_node() - start the service (possibly waiting to ensure it started successfully)

• stop_node() - kill processes on the given node

• clean_node() - remove persistent state leftover from testing, e.g. log files

These may block to ensure services start or stop properly, but must not block for the full lifetime of the service. If
you need to run a blocking process (e.g. run a process via SSH and iterate over its output), this should be done in a
background thread. For services that exit after completing a fixed operation (e.g. produce N messages to topic foo),
you should also implement wait, which will usually just wait for background worker threads to exit. The Service
base class provides a helper method run which wraps start, wait, and stop for tests that need to start a service
and wait for it to finish. You can also provide additional helper methods for common test functionality. Normal
services might provide a bounce method.

Most of the code you’ll write for a service will just be series of SSH commands and tests of output. You should request
the number of nodes you’ll need using the num_nodes or cluster_spec parameter to the Service base class’s
constructor. Then, in your Service’s methods you’ll have access to self.nodes to access the nodes allocated to your
service. Each node has an associated RemoteAccount instance which lets you easily perform remote operations
such as running commands via SSH or creating files. By default, these operations try to hide output (but provide it
to you if you need to extract some subset of it) and checks status codes for errors so any operations that fail cause an
obvious failure of the entire test.

15

Ducktape Documentation, Release 0.7.23

5.2 New Service Example

Let’s walk through an example of writing a simple Zookeeper service.

class ZookeeperService(Service):
PERSISTENT_ROOT = "/mnt"
LOG_FILE = os.path.join(PERSISTENT_ROOT, "zk.log")
DATA_DIR = os.path.join(PERSISTENT_ROOT, "zookeeper")
CONFIG_FILE = os.path.join(PERSISTENT_ROOT, "zookeeper.properties")

logs = {
"zk_log": {

"path": LOG_FILE,
"collect_default": True},

"zk_data": {
"path": DATA_DIR,
"collect_default": False}

}

def __init__(self, context, num_nodes):
super(ZookeeperService, self).__init__(context, num_nodes)

logs is a member of Service that provides a mechanism for locating and collecting log files produced by
the service on its nodes. logs is a dict with entries that look like log_name: {"path": log_path,
"collect_default": boolean}. In our example, log files will be collected on both successful and failed
test runs, while files from the data directory will be collected only on failed test runs. Zookeeper service requests the
number of nodes passed to its constructor by passing num_nodes parameters to the Service base class’s constructor.

def start_node(self, node):
idx = self.idx(node)
self.logger.info("Starting ZK node %d on %s", idx, node.account.hostname)

node.account.ssh("mkdir -p %s" % self.DATA_DIR)
node.account.ssh("echo %d > %s/myid" % (idx, self.DATA_DIR))

prop_file = """\n dataDir=%s\n clientPort=2181""" % self.DATA_DIR
for idx, node in enumerate(self.nodes):

prop_file += "\n server.%d=%s:2888:3888" % (idx, node.account.hostname)
self.logger.info("zookeeper.properties: %s" % prop_file)
node.account.create_file(self.CONFIG_FILE, prop_file)

start_cmd = "/opt/kafka/bin/zookeeper-server-start.sh %s 1>> %s 2>> %s &" % \
(self.CONFIG_FILE, self.LOG_FILE, self.LOG_FILE)

with node.account.monitor_log(self.LOG_FILE) as monitor:
node.account.ssh(start_cmd)
monitor.wait_until(

"binding to port",
timeout_sec=100,
backoff_sec=7,
err_msg="Zookeeper service didn't finish startup"

)
self.logger.debug("Zookeeper service is successfully started.")

The start_node method first creates directories and the config file on the given node, and then invokes the start
script to start a Zookeeper service. In this simple example, the config file is created from manually constructed
prop_file string, because it has only a couple of easy to construct lines. More complex config files can be created

16 Chapter 5. Create New Services

Ducktape Documentation, Release 0.7.23

with templates, as described in Using Templates.

A service may take time to start and get to a usable state. Using sleeps to wait for a service to start often leads to a
flaky test. The sleep time may be too short, or the service may fail to start altogether. It is useful to verify that the
service starts properly before returning from the start_node, and fail the test if the service fails to start. Otherwise,
the test will likely fail later, and it would be harder to find the root cause of the failure. One way to check that the
service starts successfully is to check whether a service’s process is alive and one additional check that the service is
usable such as querying the service or checking some metrics if they are available. Our example checks whether a
Zookeeper service is started successfully by searching for a particular output in a log file.

The RemoteAccount instance associated with each node provides you with LogMonitor that let you check or
wait for a pattern to appear in the log. Our example waits for 100 seconds for “binding to port” string to appear in the
self.LOG_FILE log file, and raises an exception if it does not.

def pids(self, node):
try:

cmd = "ps ax | grep -i zookeeper | grep java | grep -v grep | awk '{print $1}'
→˓"

pid_arr = [pid for pid in node.account.ssh_capture(cmd, allow_fail=True,
→˓callback=int)]

return pid_arr
except (RemoteCommandError, ValueError) as e:

return []

def alive(self, node):
return len(self.pids(node)) > 0

def stop_node(self, node):
idx = self.idx(node)
self.logger.info("Stopping %s node %d on %s" % (type(self).__name__, idx, node.

→˓account.hostname))
node.account.kill_process("zookeeper", allow_fail=False)

def clean_node(self, node):
self.logger.info("Cleaning Zookeeper node %d on %s", self.idx(node), node.account.

→˓hostname)
if self.alive(node):

self.logger.warn("%s %s was still alive at cleanup time. Killing forcefully...
→˓" %

(self.__class__.__name__, node.account))
node.account.kill_process("zookeeper", clean_shutdown=False, allow_fail=True)
node.account.ssh("rm -rf /mnt/zookeeper /mnt/zookeeper.properties /mnt/zk.log",

allow_fail=False)

The stop_node method uses kill_process() to terminate the service process on the given node. If the remote
command to terminate the process fails, kill_process() will raise an RemoteCommandError exception.

The clean_node method forcefully kills the process if it is still alive, and then removes persistent state leftover
from testing. Make sure to properly cleanup the state to avoid test order dependency and flaky tests. You can assume
complete control of the machine, so it is safe to delete an entire temporary working space and kill all java processes,
etc.

5.3 Using Templates

Both Service and Test subclass TemplateRenderer that lets you render templates directly from strings or
from files loaded from templates/ directory relative to the class. A template contains variables and/or expressions,

5.3. Using Templates 17

Ducktape Documentation, Release 0.7.23

which are replaced with values when a template is rendered. TemplateRenderer renders templates using Jinja2
template engine. A good use-case for templates is a properties file that needs to be passed to a service process. In New
Service Example, the properties file is created by building a string and using it as contents as follows:

prop_file = """\n dataDir=%s\n clientPort=2181""" % self.DATA_DIR
for idx, node in enumerate(self.nodes):

prop_file += "\n server.%d=%s:2888:3888" % (idx, node.account.hostname)
node.account.create_file(self.CONFIG_FILE, prop_file)

A template approach is to add a properties file in templates/ directory relative to the ZookeeperService class:

dataDir={{ DATA_DIR }}
clientPort=2181
{% for node in nodes %}
server.{{ loop.index }}={{ node.account.hostname }}:2888:3888
{% endfor %}

Suppose we named the file zookeeper.properties. The creation of the config file will look like this:

prop_file = self.render('zookeeper.properties')
node.account.create_file(self.CONFIG_FILE, prop_file)

18 Chapter 5. Create New Services

http://jinja.pocoo.org/docs/2.9/

CHAPTER 6

Debug Tests

The test results go in results/<date>--<test_number>. For results from a particular test, look
for results/<date>--<test_number>/test_class_name/<test_method_name>/ directory. The
test_log.debug file will contain the log output from the python driver, and logs of services used in the test will
be in service_name/node_name sub-directory.

If there is not enough information in the logs, you can re-run the test with --no-teardown argument.

ducktape dir/tests/my_test.py::TestA.test_a --no-teardown

This will run the test but will not kill any running processes or remove log files when the test finishes running. Then,
you can examine the state of a running service or the machine when the service process is running by logging into
that machine. Suppose you suspect a particular service being the cause of the test failure. You can find out which
machine was allocated to that service by either looking at test_log.debug or at directory names under results/
<date>--<test_number>/test_class_name/<test_method_name>/service_name/. It could be
useful to add an explicit debug log to start_node method with a node ID and node’s hostname information for
easy debugging:

def start_node(self, node):
idx = self.idx(node)
self.logger.info("Starting ZK node %d on %s", idx, node.account.hostname)

The log statement will look something like this:

[INFO - 2017-03-28 22:07:25,222 - zookeeper - start_node - lineno:50]: Starting ZK
→˓node 1 on worker1

If you are using Vagrant for example, you can then log into that node via:

vagrant ssh worker1

19

Ducktape Documentation, Release 0.7.23

6.1 Use Logging

Distributed system tests can be difficult to debug. You want to add a lot of logging for debugging and tracking progress
of the test. A good approach would be to log an intention of an operation with some useful information before any
operation that can fail. It could be a good idea to use a higher logging level than you would in production so more info
is available. For example, make your log levels default to DEBUG instead of INFO. Also, put enough information to
a message of assert to help figure out what went wrong as well as log messages. Consider an example of testing
ElasticSearch service:

res = es.search(index="test-index", body={"query": {"match_all": {}}})
self.logger.debug("result: %s" % res['hits'])
assert res['hits']['total'] == 1, "Expected total 1 hit, but got %d" % res['hits'][
→˓'total']
for hit in res['hits']['hits']:

assert 'kimchy’ == hit['_source']['author’], "Expected author kimchy but got %s"
→˓% hit['_source']['author']

assert 'Elasticsearch: cool.' == hit['_source']['text’], "Expected text
→˓Elasticsearch: cool. but got %s" % hit['_source']['text’]

First, the tests outputs the result of a search, so that if any of the following assertions fail, we can see the whole result
in test_log.debug. Assertion messages help to quickly see the difference in expected and retrieved results.

6.2 Fail early

Try to avoid a situation where a test fails because of an uncaught failure earlier in the test. Suppose we write a
start_node method that does not check if the service starts successfully. The service fails to start, but we get a test
failure indication that there was a problem querying the service. It would be much faster to debug the issue if the test
failure pointed to the issue with starting the service. So make sure to add checks for operations that may fail, and fail
the test earlier than later.

6.3 Flaky tests

Flaky tests are hard to debug due to their non-determinism, they waste time, and sometimes hide real bugs: developers
tend to ignore those failures, and thus could miss real bugs. Flakiness can come from the test itself, the system it is
testing, or the environmental issues.

6.3.1 Waiting on Conditions

A common cause of a flaky test is asynchronous wait on conditions. A test makes an asynchronous call and does not
properly wait for the result of the call to become available before using it:

node.account.kill_process("zookeeper", allow_fail=False)
time.sleep(2)
assert not self.alive(node), “Expected Zookeeper service to stop”

In this example, the test terminates a zookeeper service via kill_process and then uses time.sleep to wait for
it to stop. If terminating the process takes longer, the test will fail. The test may intermittently fail based on how fast
a process terminates. Of course, there should be a timeout for termination to ensure that test does not run indefinitely.
You could increase sleep time, but that also increases the test run length. A more explicit way to express this condition
is to use wait_until() with a timeout:

20 Chapter 6. Debug Tests

Ducktape Documentation, Release 0.7.23

node.account.kill_process("zookeeper", allow_fail=False)
wait_until(lambda: not self.alive(node),

timeout_sec=5,
err_msg="Timed out waiting for zookeeper to stop.")

The test will progress as soon as condition is met, and timeout ensures that the test does not run indefinitely if termi-
nation never ends.

Think carefully about the condition to check. A common source of issues is incorrect choice of condition of successful
service start in start_node implementation. One way to check that a service starts successfully is to wait for
some specific log output. However, make sure that this specific log message is always printed after the things run
successfully. If there is still a chance that service may fail to start after the log is printed, this may cause race conditions
and flaky tests. Sometimes it could be better to check if the service runs successfully by querying a service or checking
some metrics if they are available.

6.3.2 Test Order Dependency

Make sure that your services properly cleanup the state in clean_node implementation. Failure to properly clean
up the state can cause the next run of the test to fail or fail intermittently if other tests happen to clean same directories
for example. One of the benefits of isolation that ducktape assumes is that you can assume you have complete control
of the machine. It is ok to delete the entire working space. It is also safe to kill all java processes you can find rather
than being more targeted. So, clean up aggressively.

6.3.3 Incorrect Assumptions

It is possible that assumptions about how the system works that we are testing are incorrect. One way to help debug
this is to use more detailed comments why certain checks are made.

6.4 Tools for Managing Logs

Analyzing and matching up logs from a distributed service could be time consuming. There are many good tools
for working with logs. Examples include http://lnav.org/, http://list.xmodulo.com/multitail.html, and http://glogg.
bonnefon.org/.

6.5 Validating Ssh Issues

Ducktape supports running custom validators when an ssh error occurs, allowing you to run your own validation
against a host. this is done simply by running ducktape with the –ssh-checker-function, followed by the module path
to your function, so for instance:

ducktape my-test.py --ssh-checker-function my.module.validator.validate_ssh

this function will take in the ssh error raised as its first argument, and the remote account object as its second.

6.4. Tools for Managing Logs 21

http://lnav.org/
http://list.xmodulo.com/multitail.html
http://glogg.bonnefon.org/
http://glogg.bonnefon.org/

Ducktape Documentation, Release 0.7.23

22 Chapter 6. Debug Tests

CHAPTER 7

API Doc

7.1 Test

class ducktape.tests.test.Test(test_context, *args, **kwargs)
Bases: ducktape.template.TemplateRenderer

Base class for tests.

__init__(test_context, *args, **kwargs)

compress_service_logs(node, service, node_logs)
Compress logs on a node corresponding to the given service.

Parameters

• node – The node on which to compress the given logs

• service – The service to which the node belongs

• node_logs – Paths to logs (or log directories) which will be compressed

Returns a list of paths to compressed logs.

copy_service_logs(test_status)
Copy logs from service nodes to the results directory.

If the test passed, only the default set will be collected. If the the test failed, all logs will be collected.

min_cluster_size()
Returns the number of linux nodes which this test needs.

THIS METHOD IS DEPRECATED, and provided only for backwards compatibility. Please implement
min_cluster_spec instead.

Returns An integer.

23

Ducktape Documentation, Release 0.7.23

min_cluster_spec()
Returns a specification for the minimal cluster we need to run this test.

This method replaces the deprecated min_cluster_size. Unlike min_cluster_size, it can handle non-Linux
operating systems.

In general, most Tests don’t need to override this method. The default implementation seen here works
well in most cases. However, the default implementation only takes into account the services that exist at
the time of the call. You may need to override this method if you add new services during the course of
your test.

Returns A ClusterSpec object.

setup()
Override this for custom setup logic.

teardown()
Override this for custom teardown logic.

class ducktape.tests.test.TestContext(**kwargs)
Bases: object

Wrapper class for state variables needed to properly run a single ‘test unit’.

__init__(**kwargs)

Parameters

• session_context –

• cluster – the cluster object which will be used by this test

• module – name of the module containing the test class/method

• cls – class object containing the test method

• function – the test method

• file – file containing this module

• injected_args – a dict containing keyword args which will be passed to the test
method

• cluster_use_metadata – dict containing information about how this test will use
cluster resources

close()
Release resources, etc.

copy(**kwargs)
Construct a new TestContext object from another TestContext object Note that this is not a true copy, since
a fresh ServiceRegistry instance will be created.

description
Description of the test, needed in particular for reporting. If the function has a docstring, return that,
otherwise return the class docstring or “”.

expected_cluster_spec
The cluster spec we expect this test to consume when run.

Returns A ClusterSpec object.

expected_num_nodes
How many nodes of any type we expect this test to consume when run.

Returns an integer number of nodes.

24 Chapter 7. API Doc

Ducktape Documentation, Release 0.7.23

local_scratch_dir
This local scratch directory is created/destroyed on the test driver before/after each test is run.

test_name
The fully-qualified name of the test. This is similar to test_id, but does not include the session ID. It
includes the module, class, and method name.

7.2 Services

class ducktape.services.service.Service(context, num_nodes=None, cluster_spec=None,
*args, **kwargs)

Bases: ducktape.template.TemplateRenderer

Service classes know how to deploy a service onto a set of nodes and then clean up after themselves.

They request the necessary resources from the cluster, configure each node, and bring up/tear down the service.

They also expose information about the service so that other services or test scripts can easily be configured
to work with them. Finally, they may be able to collect and check logs/output from the service, which can be
helpful in writing tests or benchmarks.

Services should generally be written to support an arbitrary number of nodes, even if instances are independent
of each other. They should be able to assume that there won’t be resource conflicts: the cluster tests are being
run on should be large enough to use one instance per service instance.

__init__(context, num_nodes=None, cluster_spec=None, *args, **kwargs)
Initialize the Service.

Note: only one of (num_nodes, cluster_spec) may be set.

Parameters

• context – An object which has at minimum ‘cluster’ and ‘logger’ attributes. In tests,
this is always a TestContext object.

• num_nodes – An integer representing the number of Linux nodes to allocate.

• cluster_spec – A ClusterSpec object representing the minimum cluster specification
needed.

allocate_nodes()
Request resources from the cluster.

allocated
Return True iff nodes have been allocated to this service instance.

clean()
Clean up persistent state on each node - e.g. logs, config files etc. Subclasses must override clean_node.

clean_node(node)
Clean up persistent state on this node - e.g. service logs, configuration files etc.

close()
Release resources.

cluster
The cluster object from which this service instance gets its nodes.

free()
Free each node. This ‘deallocates’ the nodes so the cluster can assign them to other services.

7.2. Services 25

Ducktape Documentation, Release 0.7.23

get_node(idx)
ids presented externally are indexed from 1, so we provide a helper method to avoid confusion.

idx(node)
Return id of the given node. Return -1 if node does not belong to this service.

idx identifies the node within this service instance (not globally).

local_scratch_dir
This local scratch directory is created/destroyed on the test driver before/after each test is run.

logger
The logger instance for this service.

run()
Helper that executes run(), wait(), and stop() in sequence.

static run_parallel(*args)
Helper to run a set of services in parallel. This is useful if you want multiple services of different types to
run concurrently, e.g. a producer + consumer pair.

service_id
Human-readable identifier (almost certainly) unique within a test run.

start()
Start the service on all nodes.

start_node(node)
Start service process(es) on the given node.

stop()
Stop service processes on each node in this service. Subclasses must override stop_node.

stop_node(node)
Halt service process(es) on this node.

wait(timeout_sec=600)
Wait for the service to finish. This only makes sense for tasks with a fixed amount of work to do. For
services that generate output, it is only guaranteed to be available after this call returns.

wait_node(node, timeout_sec=None)
Wait for the service on the given node to finish. Return True if the node finished shutdown, False otherwise.

who_am_i(node=None)
Human-readable identifier useful for log messages.

class ducktape.services.background_thread.BackgroundThreadService(context,
num_nodes)

Bases: ducktape.services.service.Service

__init__(context, num_nodes)

wait(timeout_sec=600)
Wait no more than timeout_sec for all worker threads to finish.

raise TimeoutException if all worker threads do not finish within timeout_sec

26 Chapter 7. API Doc

Ducktape Documentation, Release 0.7.23

7.3 Remote Account

class ducktape.cluster.remoteaccount.RemoteAccount(ssh_config, exter-
nally_routable_ip=None,
logger=None,
ssh_exception_checks=[])

Bases: ducktape.utils.http_utils.HttpMixin

RemoteAccount is the heart of interaction with cluster nodes, and every allocated cluster node has a reference
to an instance of RemoteAccount.

It wraps metadata such as ssh configs, and provides methods for file system manipulation and shell commands.

Each operating system has its own RemoteAccount implementation.

__init__(ssh_config, externally_routable_ip=None, logger=None, ssh_exception_checks=[])

alive(pid)
Return True if and only if process with given pid is alive.

close()
Close/release any outstanding network connections to remote account.

copy_between(src, dest, dest_node)
Copy src to dest on dest_node

Parameters

• src – Path to the file or directory we want to copy

• dest – The destination path

• dest_node – The node to which we want to copy the file/directory

Note that if src is a directory, this will automatically copy recursively.

java_pids(match)
Get all the Java process IDs matching ‘match’.

Parameters match – The AWK expression to match

kill_java_processes(match, clean_shutdown=True, allow_fail=False)
Kill all the java processes matching ‘match’.

Parameters

• match – The AWK expression to match

• clean_shutdown – True if we should shut down cleanly with SIGTERM; false if we
should shut down with SIGKILL.

• allow_fail – True if we should throw exceptions if the ssh commands fail.

monitor_log(log)
Context manager that returns an object that helps you wait for events to occur in a log. This checks the
size of the log at the beginning of the block and makes a helper object available with convenience methods
for checking or waiting for a pattern to appear in the log. This will commonly be used to start a process,
then wait for a log message indicating the process is in a ready state.

See LogMonitor for more usage information.

remove(path, allow_fail=False)
Remove the given file or directory

7.3. Remote Account 27

Ducktape Documentation, Release 0.7.23

wait_for_http_service(port, headers, timeout=20, path=’/’)
Wait until this service node is available/awake.

class ducktape.cluster.remoteaccount.LogMonitor(acct, log, offset)
Bases: object

Helper class returned by monitor_log. Should be used as:

with remote_account.monitor_log("/path/to/log") as monitor:
remote_account.ssh("/command/to/start")
monitor.wait_until("pattern.*to.*grep.*for", timeout_sec=5)

to run the command and then wait for the pattern to appear in the log.

__init__(acct, log, offset)

wait_until(pattern, **kwargs)
Wait until the specified pattern is found in the log, after the initial offset recorded when the LogMonitor
was created. Additional keyword args are passed directly to ducktape.utils.util.wait_until

class ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount(*args, **kwargs)
Bases: ducktape.cluster.remoteaccount.RemoteAccount

__init__(*args, **kwargs)

get_external_accessible_network_devices()
gets the subset of devices accessible through an external conenction

get_network_devices()
Utility to get all network devices on a linux account

local
Returns True if this ‘remote’ account is probably local. This is an imperfect heuristic, but should work for
simple local testing.

class ducktape.cluster.windows_remoteaccount.WindowsRemoteAccount(*args,
**kwargs)

Bases: ducktape.cluster.remoteaccount.RemoteAccount

Windows remote accounts are currently only supported in EC2. See _setup_winrm() for how the WinRM
password is fetched, which is currently specific to AWS.

The Windows AMI needs to also have an SSH server running to support SSH commands, SCP, and rsync.

__init__(*args, **kwargs)

7.4 Clusters

class ducktape.cluster.cluster.Cluster
Bases: object

Interface for a cluster – a collection of nodes with login credentials. This interface doesn’t define any mapping
of roles/services to nodes. It only interacts with some underlying system that can describe available resources
and mediates reservations of those resources.

__init__()

all()
Return a ClusterSpec object describing all nodes.

alloc(cluster_spec)
Allocate some nodes.

28 Chapter 7. API Doc

Ducktape Documentation, Release 0.7.23

Parameters cluster_spec – A ClusterSpec describing the nodes to be allocated.

Throws InsufficientResources If the nodes cannot be allocated.

Returns Allocated nodes spec

available()
Return a ClusterSpec object describing the currently available nodes.

do_alloc(cluster_spec)
Subclasses should implement actual allocation here.

Parameters cluster_spec – A ClusterSpec describing the nodes to be allocated.

Throws InsufficientResources If the nodes cannot be allocated.

Returns Allocated nodes spec

free(nodes)
Free the given node or list of nodes

used()
Return a ClusterSpec object describing the currently in use nodes.

class ducktape.cluster.vagrant.VagrantCluster(*args, **kwargs)
Bases: ducktape.cluster.json.JsonCluster

An implementation of Cluster that uses a set of VMs created by Vagrant. Because we need hostnames that can
be advertised, this assumes that the Vagrant VM’s name is a routeable hostname on all the hosts.

• If cluster_file is specified in the constructor’s kwargs (i.e. passed via command line argument –cluster-file)
- If cluster_file exists on the filesystem, read cluster info from the file - Otherwise, retrieve cluster info via
“vagrant ssh-config” from vagrant and write cluster info to cluster_file

• Otherwise, retrieve cluster info via “vagrant ssh-config” from vagrant

__init__(*args, **kwargs)

class ducktape.cluster.localhost.LocalhostCluster(*args, **kwargs)
Bases: ducktape.cluster.cluster.Cluster

A “cluster” that runs entirely on localhost using default credentials. This doesn’t require any user configuration
and is equivalent to the old defaults in cluster_config.json. There are no constraints on the resources available.

__init__(*args, **kwargs)

class ducktape.cluster.json.JsonCluster(cluster_json=None, *args, **kwargs)
Bases: ducktape.cluster.cluster.Cluster

An implementation of Cluster that uses static settings specified in a cluster file or json-serializeable dict

__init__(cluster_json=None, *args, **kwargs)
Initialize JsonCluster

JsonCluster can be initialized from:

• a json-serializeable dict

• a “cluster_file” containing json

Parameters

• cluster_json – a json-serializeable dict containing node information. If
cluster_json is None, load from file

• (optional) (cluster_file) – Overrides the default location of the json cluster file

7.4. Clusters 29

Ducktape Documentation, Release 0.7.23

Example json with a local Vagrant cluster:

{
"nodes": [
{
"externally_routable_ip": "192.168.50.151",

"ssh_config": {
"host": "worker1",
"hostname": "127.0.0.1",
"identityfile": "/path/to/private_key",
"password": null,
"port": 2222,
"user": "vagrant"

}
},
{
"externally_routable_ip": "192.168.50.151",

"ssh_config": {
"host": "worker2",
"hostname": "127.0.0.1",
"identityfile": "/path/to/private_key",
"password": null,
"port": 2223,
"user": "vagrant"

}
}

]
}

static make_remote_account(ssh_config, *args, **kwargs)
Factory function for creating the correct RemoteAccount implementation.

7.5 Template

class ducktape.template.TemplateRenderer
Bases: object

render(path, **kwargs)
Render a template loaded from a file. template files referenced in file f should be in a sibling directory of f
called “templates”.

Parameters

• path – path, relative to the search paths, to the template file

• kwargs – optional override parameters

Returns the rendered template

render_template(template, **kwargs)
Render a template using the context of the current object, optionally with overrides.

Parameters

• template – the template to render, a Template or a str

• kwargs – optional override parameters

30 Chapter 7. API Doc

Ducktape Documentation, Release 0.7.23

Returns the rendered template

7.5. Template 31

Ducktape Documentation, Release 0.7.23

32 Chapter 7. API Doc

CHAPTER 8

Misc

8.1 Developer Install

If you are are a ducktape developer, consider using the develop command instead of install. This allows you
to make code changes without constantly reinstalling ducktape (see http://stackoverflow.com/questions/19048732/
python-setup-py-develop-vs-install for more information):

cd ducktape
python setup.py develop

To uninstall:

cd ducktape
python setup.py develop --uninstall

8.2 Unit Tests

You can run the tests with code coverage and style check using tox:

tox

Alternatively, you can activate the virtualenv and run pytest and flake8 directly:

source ~/.virtualenvs/ducktape/bin/activate
pytest tests
flake8

8.3 Windows

Ducktape support Services that run on Windows, but only in EC2.

33

http://stackoverflow.com/questions/19048732/python-setup-py-develop-vs-install
http://stackoverflow.com/questions/19048732/python-setup-py-develop-vs-install
https://tox.readthedocs.io/en/latest/

Ducktape Documentation, Release 0.7.23

When a Service requires a Windows machine, AWS credentials must be configured on the machine running duck-
tape.

Ducktape uses the boto3 Python module to connect to AWS. And boto3 support many different configuration options

Here’s an example bare minimum configuration using environment variables:

export AWS_ACCESS_KEY_ID="ABC123"
export AWS_SECRET_ACCESS_KEY="secret"
export AWS_DEFAULT_REGION="us-east-1"

The region can be any AWS region, not just us-east-1.

34 Chapter 8. Misc

https://aws.amazon.com/sdk-for-python/
https://boto3.readthedocs.io/en/latest/guide/configuration.html#guide-configuration

CHAPTER 9

Contribute

• Source Code: https://github.com/confluentinc/ducktape

• Issue Tracker: https://github.com/confluentinc/ducktape/issues

35

https://github.com/confluentinc/ducktape
https://github.com/confluentinc/ducktape/issues

Ducktape Documentation, Release 0.7.23

36 Chapter 9. Contribute

CHAPTER 10

License

The project is licensed under the Apache 2 license.

37

Ducktape Documentation, Release 0.7.23

38 Chapter 10. License

Index

Symbols
__init__() (ducktape.cluster.cluster.Cluster method), 28
__init__() (ducktape.cluster.json.JsonCluster method), 29
__init__() (ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount

method), 28
__init__() (ducktape.cluster.localhost.LocalhostCluster

method), 29
__init__() (ducktape.cluster.remoteaccount.LogMonitor

method), 28
__init__() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27
__init__() (ducktape.cluster.vagrant.VagrantCluster

method), 29
__init__() (ducktape.cluster.windows_remoteaccount.WindowsRemoteAccount

method), 28
__init__() (ducktape.services.background_thread.BackgroundThreadService

method), 26
__init__() (ducktape.services.service.Service method), 25
__init__() (ducktape.tests.test.Test method), 23
__init__() (ducktape.tests.test.TestContext method), 24

A
alive() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27
all() (ducktape.cluster.cluster.Cluster method), 28
alloc() (ducktape.cluster.cluster.Cluster method), 28
allocate_nodes() (ducktape.services.service.Service

method), 25
allocated (ducktape.services.service.Service attribute), 25
available() (ducktape.cluster.cluster.Cluster method), 29

B
BackgroundThreadService (class in duck-

tape.services.background_thread), 26

C
clean() (ducktape.services.service.Service method), 25
clean_node() (ducktape.services.service.Service method),

25

close() (ducktape.cluster.remoteaccount.RemoteAccount
method), 27

close() (ducktape.services.service.Service method), 25
close() (ducktape.tests.test.TestContext method), 24
Cluster (class in ducktape.cluster.cluster), 28
cluster (ducktape.services.service.Service attribute), 25
cluster() (in module ducktape.mark.resource), 12
compress_service_logs() (ducktape.tests.test.Test

method), 23
copy() (ducktape.tests.test.TestContext method), 24
copy_between() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27
copy_service_logs() (ducktape.tests.test.Test method), 23

D
description (ducktape.tests.test.TestContext attribute), 24
do_alloc() (ducktape.cluster.cluster.Cluster method), 29

E
expected_cluster_spec (ducktape.tests.test.TestContext

attribute), 24
expected_num_nodes (ducktape.tests.test.TestContext at-

tribute), 24

F
free() (ducktape.cluster.cluster.Cluster method), 29
free() (ducktape.services.service.Service method), 25

G
get_external_accessible_network_devices() (duck-

tape.cluster.linux_remoteaccount.LinuxRemoteAccount
method), 28

get_network_devices() (duck-
tape.cluster.linux_remoteaccount.LinuxRemoteAccount
method), 28

get_node() (ducktape.services.service.Service method),
25

I
idx() (ducktape.services.service.Service method), 26

39

Ducktape Documentation, Release 0.7.23

ignore() (in module ducktape.mark), 13

J
java_pids() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27
JsonCluster (class in ducktape.cluster.json), 29

K
kill_java_processes() (duck-

tape.cluster.remoteaccount.RemoteAccount
method), 27

L
LinuxRemoteAccount (class in duck-

tape.cluster.linux_remoteaccount), 28
local (ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount

attribute), 28
local_scratch_dir (ducktape.services.service.Service at-

tribute), 26
local_scratch_dir (ducktape.tests.test.TestContext at-

tribute), 24
LocalhostCluster (class in ducktape.cluster.localhost), 29
logger (ducktape.services.service.Service attribute), 26
LogMonitor (class in ducktape.cluster.remoteaccount), 28

M
make_remote_account() (duck-

tape.cluster.json.JsonCluster static method),
30

matrix() (in module ducktape.mark), 12
min_cluster_size() (ducktape.tests.test.Test method), 23
min_cluster_spec() (ducktape.tests.test.Test method), 23
monitor_log() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27

P
parametrize() (in module ducktape.mark), 11

R
RemoteAccount (class in duck-

tape.cluster.remoteaccount), 27
remove() (ducktape.cluster.remoteaccount.RemoteAccount

method), 27
render() (ducktape.template.TemplateRenderer method),

30
render_template() (ducktape.template.TemplateRenderer

method), 30
run() (ducktape.services.service.Service method), 26
run_parallel() (ducktape.services.service.Service static

method), 26

S
Service (class in ducktape.services.service), 25

service_id (ducktape.services.service.Service attribute),
26

setup() (ducktape.tests.test.Test method), 24
start() (ducktape.services.service.Service method), 26
start_node() (ducktape.services.service.Service method),

26
stop() (ducktape.services.service.Service method), 26
stop_node() (ducktape.services.service.Service method),

26

T
teardown() (ducktape.tests.test.Test method), 24
TemplateRenderer (class in ducktape.template), 30
Test (class in ducktape.tests.test), 23
test_name (ducktape.tests.test.TestContext attribute), 25
TestContext (class in ducktape.tests.test), 24

U
used() (ducktape.cluster.cluster.Cluster method), 29

V
VagrantCluster (class in ducktape.cluster.vagrant), 29

W
wait() (ducktape.services.background_thread.BackgroundThreadService

method), 26
wait() (ducktape.services.service.Service method), 26
wait_for_http_service() (duck-

tape.cluster.remoteaccount.RemoteAccount
method), 27

wait_node() (ducktape.services.service.Service method),
26

wait_until() (ducktape.cluster.remoteaccount.LogMonitor
method), 28

who_am_i() (ducktape.services.service.Service method),
26

WindowsRemoteAccount (class in duck-
tape.cluster.windows_remoteaccount), 28

40 Index

	Install
	Test Clusters
	Cluster Specifications

	Run Tests
	Running Tests
	Options
	Configuration File
	Output

	Create New Tests
	Writing ducktape Tests
	Test Parameters
	Logging
	New test example

	Create New Services
	Writing ducktape services
	New Service Example
	Using Templates

	Debug Tests
	Use Logging
	Fail early
	Flaky tests
	Tools for Managing Logs
	Validating Ssh Issues

	API Doc
	Test
	Services
	Remote Account
	Clusters
	Template

	Misc
	Developer Install
	Unit Tests
	Windows

	Contribute
	License
	Index

