

Distributed System Integration & Performance Testing Library

Ducktape contains tools for running system integration and performance tests. It provides the following features:

	Write tests for distributed systems in a simple unit test-like style

	Isolation by default so system tests are as reliable as possible.

	Utilities for pulling up and tearing down services easily in clusters in different environments (e.g. local, custom cluster, Vagrant, K8s, Mesos, Docker, cloud providers, etc.)

	Trigger special events (e.g. bouncing a service)

	Collect results (e.g. logs, console output)

	Report results (e.g. expected conditions met, performance results, etc.)

	Install

	Test Clusters
	Cluster Specifications

	Run Tests
	Running Tests

	Options

	Configuration File

	Output

	Create New Tests
	Writing ducktape Tests

	Test Parameters

	Logging

	New test example

	Create New Services
	Writing ducktape services

	New Service Example

	Using Templates

	Debug Tests
	Use Logging

	Fail early

	Flaky tests
	Waiting on Conditions

	Test Order Dependency

	Incorrect Assumptions

	Tools for Managing Logs

	Validating Ssh Issues

	API Doc
	Test

	Services

	Remote Account

	Clusters

	Template

	Misc
	Developer Install

	Unit Tests

	Windows

Contribute

	Source Code: https://github.com/confluentinc/ducktape

	Issue Tracker: https://github.com/confluentinc/ducktape/issues

License

The project is licensed under the Apache 2 license.

Install

	Install cryptography [https://cryptography.io/en/latest/installation] (used by paramiko which Ducktape depends on), this may have non-python external requirements

	OSX (if needed):

brew install openssl

	Ubuntu:

sudo apt-get install build-essential libssl-dev libffi-dev python-dev

	Fedora and RHEL-derivatives:

sudo yum install gcc libffi-devel python-devel openssl-devel

	As a general rule, it’s recommended to use an isolation tool such as virtualenv

	Install Ducktape:

pip install ducktape

Note

On OSX you may need to:

C_INCLUDE_PATH=/usr/local/opt/openssl/include LIBRARY_PATH=/usr/local/opt/openssl/lib pip install ducktape

If you are not using a virtualenv and get the error message failed with error code 1, you may need to install ducktape to your user directory instead with

pip install --user ducktape

Test Clusters

Ducktape runs on a test cluster with several nodes. Ducktape will take ownership of the nodes and handle starting, stopping, and running services on them.

Many test environments are possible. The nodes may be local nodes, running inside Docker. Or they could be virtual machines running on a public cloud.

Cluster Specifications

A cluster specification– also called a ClusterSpec– describes a particular
cluster configuration. Currently the cluster specification can express the
number of nodes of each operating system that are required.

Cluster specifications give us a vocabulary to express what a particular
service or test needs to run. For example, a service might require a cluster
with three Linux nodes and one Windows node. We could express that with a
ClusterSpec containing three Linux NodeSpec objects and one Windows NodeSpec
object.

Run Tests

Running Tests

ducktape discovers and runs tests in the path provided, here are some ways to run tests:

ducktape <relative_path_to_testdirectory> # e.g. ducktape dir/tests
ducktape <relative_path_to_file> # e.g. ducktape dir/tests/my_test.py
ducktape <path_to_test>[::SomeTestClass] # e.g. ducktape dir/tests/my_test.py::TestA
ducktape <path_to_test>[::SomeTestClass[.test_method]] # e.g. ducktape dir/tests/my_test.py::TestA.test_a

Options

To see a complete listing of options run:

ducktape --help

Discover and run your tests

usage: ducktape [-h] [--collect-only] [--collect-num-nodes] [--debug]
 [--config-file CONFIG_FILE] [--compress] [--cluster CLUSTER]
 [--default-num-nodes DEFAULT_NUM_NODES]
 [--cluster-file CLUSTER_FILE] [--results-root RESULTS_ROOT]
 [--exit-first] [--no-teardown] [--version]
 [--parameters PARAMETERS] [--globals GLOBALS]
 [--max-parallel MAX_PARALLEL] [--repeat REPEAT]
 [--subsets SUBSETS] [--subset SUBSET]
 [--historical-report HISTORICAL_REPORT] [--sample SAMPLE]
 [--fail-bad-cluster-utilization]
 [--test-runner-timeout TEST_RUNNER_TIMEOUT]
 [--ssh-checker-function SSH_CHECKER_FUNCTION [SSH_CHECKER_FUNCTION ...]]
 [--deflake DEFLAKE]
 [test_path [test_path ...]]

	Required Arguments

	
	test_path=['/home/docs/checkouts/readthedocs.org/user_builds/ducktape/checkouts/0.7.x/docs']

	one or more space-delimited strings indicating where to search for tests.

	Optional Arguments

	
	--collect-only=False

	display collected tests, but do not run.

	--collect-num-nodes=False

	display total number of nodes requested by all tests, but do not run anything.

	--debug=False

	pipe more verbose test output to stdout.

	--config-file="~/.ducktape/config"

	path to project-specific configuration file.

	--compress=False

	compress remote logs before collection.

	--cluster="ducktape.cluster.vagrant.VagrantCluster"

	cluster class to use to allocate nodes for tests.

	--default-num-nodes

	Global hint for cluster usage. A test without the @cluster annotation will default to this value for expected cluster usage.

	--cluster-file

	path to a json file which provides information needed to initialize a json cluster. The file is used to read/write cached cluster info if cluster is ducktape.cluster.vagrant.VagrantCluster.

	--results-root="./results"

	path to custom root results directory. Running ducktape with this root specified will result in new test results being stored in a subdirectory of this root directory.

	--exit-first=False

	exit after first failure

	--no-teardown=False

	don’t kill running processes or remove log files when a test has finished running. This is primarily useful for test developers who want to interact with running services after a test has run.

	--version=False

	display version

	--parameters

	inject these arguments into the specified test(s). Specify parameters as a JSON string.

	--globals

	user-defined globals go here. This can be a file containing a JSON object, or a string representing a JSON object.

	--max-parallel=1

	Upper bound on number of tests run simultaneously.

	--repeat=1

	Use this flag to repeat all discovered tests the given number of times.

	--subsets=1

	Number of subsets of tests to statically break the tests into to allow for parallel execution without coordination between test runner processes.

	--subset=0

	Which subset of the tests to run, based on the breakdown using the parameter for –subsets

	--historical-report

	URL of a JSON report file containing stats from a previous test run. If specified, this will be used when creating subsets of tests to divide evenly by total run time instead of by number of tests.

	--sample

	The size of a random test sample to run

	--fail-bad-cluster-utilization=False

	Fail a test if the cluster node utilization does not match the cluster node usage.

	--test-runner-timeout=1800000

	Amount of time in milliseconds between test communicating between the test runner before a timeout error occurs. Default is 30 minutes

	--ssh-checker-function

	Python module path(s) to a function that takes an exception and a remote account that will be called when an ssh error occurs, this can give some validation or better logging when an ssh error occurs. Specify any number of module paths after this flag to be called.

	--deflake=1

	the number of times a failed test should be ran in total (including its initial run) to determine flakyness. When not present, deflake will not be used, and a test will be marked as either passed or failed. When enabled tests will be marked as flaky if it passes on any of the reruns

Configuration File

You can configure options in three locations: on the command line (highest priority), in a user configuration file in
~/.ducktape/config, and in a project-specific configuration <project_dir>/.ducktape/config (lowest priority).
Configuration files use the same syntax as command line arguments and may split arguments across multiple lines:

--debug
--exit-first
--cluster=ducktape.cluster.json.JsonCluster

Output

Test results go in results/<session_id>.<session_id> which looks like <date>--<test_number>. For example: results/2015-03-28--002

ducktape does its best to group test results and log files in a sensible way. The output directory is
structured like so:

<session_id>
 session_log.info
 session_log.debug
 report.txt # Summary report of all tests run in this session
 report.html # Open this to see summary report in a browser
 report.css

 <test_class_name>
 <test_method_name>
 test_log.info
 test_log.debug
 report.txt # Report on this single test
 [data.json] # Present if the test returns data

 <service_1>
 <node_1>
 some_logs
 <node_2>
 some_logs
 ...

To see an example of the output structure, go here [http://testing.confluent.io/confluent-kafka-system-test-results/] and click on one of the details links.

Create New Tests

Writing ducktape Tests

Subclass Test and implement as many test methods as you
want. The name of each test method must start or end with test,
e.g. test_functionality or example_test. Typically, a test will
start a few services, collect and/or validate some data, and then finish.

If the test method finishes with no exceptions, the test is recorded as successful, otherwise it is recorded as a failure.

Here is an example of a test that just starts a Zookeeper cluster with 2 nodes, and a
Kafka cluster with 3 nodes:

class StartServicesTest(Test):
 """Make sure we can start Kafka and Zookeeper services."""
 def __init__(self, test_context):
 super(StartServicesTest, self).__init__(test_context=test_context)
 self.zk = ZookeeperService(test_context, num_nodes=2)
 self.kafka = KafkaService(test_context, num_nodes=3, self.zk)

 def test_services_start(self):
 self.zk.start()
 self.kafka.start()

Test Parameters

Use test decorators to parametrize tests, examples are provided below

	
ducktape.mark.parametrize(**kwargs)

	Function decorator used to parametrize its arguments.
Decorating a function or method with @parametrize marks it with the Parametrize mark.

Example:

@parametrize(x=1, y=2 z=-1)
@parametrize(x=3, y=4, z=5)
def g(x, y, z):
 print "x = %s, y = %s, z = %s" % (x, y, z)

for ctx in MarkedFunctionExpander(..., function=g, ...).expand():
 ctx.function()

output:
x = 1, y = 2, z = -1
x = 3, y = 4, z = 5

	
ducktape.mark.matrix(**kwargs)

	Function decorator used to parametrize with a matrix of values.
Decorating a function or method with @matrix marks it with the Matrix mark. When expanded using the
MarkedFunctionExpander, it yields a list of TestContext objects, one for every possible combination
of arguments.

Example:

@matrix(x=[1, 2], y=[-1, -2])
def g(x, y):
 print "x = %s, y = %s" % (x, y)

for ctx in MarkedFunctionExpander(..., function=g, ...).expand():
 ctx.function()

output:
x = 1, y = -1
x = 1, y = -2
x = 2, y = -1
x = 2, y = -2

	
ducktape.mark.resource.cluster(**kwargs)

	Test method decorator used to provide hints about how the test will use the given cluster.

	Keywords used by ducktape

	
	num_nodes provide hint about how many nodes the test will consume

	cluster_spec provide hint about how many nodes of each type the test will consume

Example:

basic usage with num_nodes
@cluster(num_nodes=10)
def the_test(...):
 ...

basic usage with cluster_spec
@cluster(cluster_spec=ClusterSpec.simple_linux(10))
def the_test(...):
 ...

parametrized test:
both test cases will be marked with cluster_size of 200
@cluster(num_nodes=200)
@parametrize(x=1)
@parametrize(x=2)
def the_test(x):
 ...

test case {'x': 1} has cluster size 100, test case {'x': 2} has cluster size 200
@cluster(num_nodes=100)
@parametrize(x=1)
@cluster(num_nodes=200)
@parametrize(x=2)
def the_test(x):
 ...

	
ducktape.mark.ignore(*args, **kwargs)

	Test method decorator which signals to the test runner to ignore a given test.

Example:

When no parameters are provided to the @ignore decorator, ignore all parametrizations of the test function

@ignore # Ignore all parametrizations
@parametrize(x=1, y=0)
@parametrize(x=2, y=3)
def the_test(...):
 ...

Example:

If parameters are supplied to the @ignore decorator, only ignore the parametrization with matching parameter(s)

@ignore(x=2, y=3)
@parametrize(x=1, y=0) # This test will run as usual
@parametrize(x=2, y=3) # This test will be ignored
def the_test(...):
 ...

Logging

The Test base class sets up logger you can use which is tagged by class name,
so adding some logging for debugging or to track the progress of tests is easy:

self.logger.debug("End-to-end latency %d: %s", idx, line.strip())

These types of tests can be difficult to debug, so err toward more rather than
less logging.

Note

Logs are collected a multiple log levels, and only higher log levels are displayed to the console while the test runs. Make sure you log at the appropriate level.

New test example

Lets expand on the StartServicesTest example. The test starts a Zookeeper cluster with 2 nodes, and a
Kafka cluster with 3 nodes, and then bounces a kafka broker node which is either a special controller node or a non-controller node, depending on the bounce_controller_broker test parameter.

class StartServicesTest(Test):
 def __init__(self, test_context):
 super(StartServicesTest, self).__init__(test_context=test_context)
 self.zk = ZookeeperService(test_context, num_nodes=2)
 self.kafka = KafkaService(self.test_context, num_nodes=3, zk=self.zk)

 def setUp(self):
 self.zk.start()
 self.kafka.start()

 @matrix(bounce_controller_broker=[True, False])
 def test_broker_bounce(self, bounce_controller_broker=False):
 controller_node = self.kafka.controller()
 self.logger.debug("Found controller broker %s", controller_node.account)
 if bounce_controller_broker:
 bounce_node = controller_node
 else:
 bounce_node = self.kafka.nodes[(self.kafka.idx(controller_node) + 1) % self.kafka.num_nodes]

 self.logger.debug("Will hard kill broker %s", bounce_node.account)
 self.kafka.signal_node(bounce_node, sig=signal.SIGKILL)

 wait_until(lambda: not self.kafka.is_registered(bounce_node),
 timeout_sec=self.kafka.zk_session_timeout + 5,
 err_msg="Failed to see timely deregistration of hard-killed broker %s"
 % bounce_node.account)

 self.kafka.start_node(bounce_node)

This will run two tests, one with ‘bounce_controller_broker’: False and another with ‘bounce_controller_broker’: True arguments. We moved start of Zookeeper and Kafka services to setUp(), which is called before every test run.

The test finds which of Kafka broker nodes is a special controller node via provided controller method in KafkaService. The controller method in KafkaService will raise an exception if the controller node is not found. Make sure to check the behavior of methods provided by a service or other helper classes and fail the test as soon as an issue is found. That way, it will be much easier to find the cause of the test failure.

The test then finds the node to bounce based on bounce_controller_broker test parameter and then forcefully terminates the service process on that node via signal_node method of KafkaService. This method just sends a signal to forcefully kill the process, and does not do any further check. Thus, our test needs to check that the hard killed kafka broker is not part of the Kafka cluster anymore, before restarting the killed broker process. We do this by waiting on is_registered method provided by KafkaService to return False with a timeout, since de-registering the broker may take some time. Notice the use of wait_until method instead of a check after time.sleep. This allows the test to continue as soon as de-registration happens.

We don’t check if the restarted broker is registered, because this is already done in KafkaService start_node implementation, which will raise an exception if the service is not started successfully on a given node.

Create New Services

Writing ducktape services

Service refers generally to multiple processes, possibly long-running, which you
want to run on the test cluster.

These can be services you would actually deploy (e.g., Kafka brokers, ZK servers, REST proxy) or processes used during testing (e.g. producer/consumer performance processes). Services that are distributed systems can support a variable number of nodes which allow them to handle a variety of tests.

Each service is implemented as a class and should at least implement the following:

	start_node() - start the service (possibly waiting to ensure it started successfully)

	stop_node() - kill processes on the given node

	clean_node() - remove persistent state leftover from testing, e.g. log files

These may block to ensure services start or stop properly, but must not block for the full lifetime of the service. If you need to run a blocking process (e.g. run a process via SSH and iterate over its output), this should be done in a background thread. For services that exit after completing a fixed operation (e.g. produce N messages to topic foo), you should also implement wait, which will usually just wait for background worker threads to exit. The Service base class provides a helper method run which wraps start, wait, and stop for tests that need to start a service and wait for it to finish. You can also provide additional helper methods for common test functionality. Normal services might provide a bounce method.

Most of the code you’ll write for a service will just be series of SSH commands and tests of output. You should request the number of nodes you’ll need using the num_nodes or cluster_spec parameter to the Service base class’s constructor. Then, in your Service’s methods you’ll have access to self.nodes to access the nodes allocated to your service. Each node has an associated RemoteAccount instance which lets you easily perform remote operations such as running commands via SSH or creating files. By default, these operations try to hide output (but provide it to you if you need to extract some subset of it) and checks status codes for errors so any operations that fail cause an obvious failure of the entire test.

New Service Example

Let’s walk through an example of writing a simple Zookeeper service.

class ZookeeperService(Service):
 PERSISTENT_ROOT = "/mnt"
 LOG_FILE = os.path.join(PERSISTENT_ROOT, "zk.log")
 DATA_DIR = os.path.join(PERSISTENT_ROOT, "zookeeper")
 CONFIG_FILE = os.path.join(PERSISTENT_ROOT, "zookeeper.properties")

 logs = {
 "zk_log": {
 "path": LOG_FILE,
 "collect_default": True},
 "zk_data": {
 "path": DATA_DIR,
 "collect_default": False}
 }

 def __init__(self, context, num_nodes):
 super(ZookeeperService, self).__init__(context, num_nodes)

logs is a member of Service that provides a mechanism for locating and collecting log files produced by the service on its nodes. logs is a dict with entries that look like log_name: {"path": log_path, "collect_default": boolean}. In our example, log files will be collected on both successful and failed test runs, while files from the data directory will be collected only on failed test runs. Zookeeper service requests the number of nodes passed to its constructor by passing num_nodes parameters to the Service base class’s constructor.

def start_node(self, node):
 idx = self.idx(node)
 self.logger.info("Starting ZK node %d on %s", idx, node.account.hostname)

 node.account.ssh("mkdir -p %s" % self.DATA_DIR)
 node.account.ssh("echo %d > %s/myid" % (idx, self.DATA_DIR))

 prop_file = """\n dataDir=%s\n clientPort=2181""" % self.DATA_DIR
 for idx, node in enumerate(self.nodes):
 prop_file += "\n server.%d=%s:2888:3888" % (idx, node.account.hostname)
 self.logger.info("zookeeper.properties: %s" % prop_file)
 node.account.create_file(self.CONFIG_FILE, prop_file)

 start_cmd = "/opt/kafka/bin/zookeeper-server-start.sh %s 1>> %s 2>> %s &" % \
 (self.CONFIG_FILE, self.LOG_FILE, self.LOG_FILE)

 with node.account.monitor_log(self.LOG_FILE) as monitor:
 node.account.ssh(start_cmd)
 monitor.wait_until(
 "binding to port",
 timeout_sec=100,
 backoff_sec=7,
 err_msg="Zookeeper service didn't finish startup"
)
 self.logger.debug("Zookeeper service is successfully started.")

The start_node method first creates directories and the config file on the given node, and then invokes the start script to start a Zookeeper service. In this simple example, the config file is created from manually constructed prop_file string, because it has only a couple of easy to construct lines. More complex config files can be created with templates, as described in Using Templates.

A service may take time to start and get to a usable state. Using sleeps to wait for a service to start often leads to a flaky test. The sleep time may be too short, or the service may fail to start altogether. It is useful to verify that the service starts properly before returning from the start_node, and fail the test if the service fails to start. Otherwise, the test will likely fail later, and it would be harder to find the root cause of the failure. One way to check that the service starts successfully is to check whether a service’s process is alive and one additional check that the service is usable such as querying the service or checking some metrics if they are available. Our example checks whether a Zookeeper service is started successfully by searching for a particular output in a log file.

The RemoteAccount instance associated with each node provides you with LogMonitor that let you check or wait for a pattern to appear in the log. Our example waits for 100 seconds for “binding to port” string to appear in the self.LOG_FILE log file, and raises an exception if it does not.

def pids(self, node):
 try:
 cmd = "ps ax | grep -i zookeeper | grep java | grep -v grep | awk '{print $1}'"
 pid_arr = [pid for pid in node.account.ssh_capture(cmd, allow_fail=True, callback=int)]
 return pid_arr
 except (RemoteCommandError, ValueError) as e:
 return []

def alive(self, node):
 return len(self.pids(node)) > 0

def stop_node(self, node):
 idx = self.idx(node)
 self.logger.info("Stopping %s node %d on %s" % (type(self).__name__, idx, node.account.hostname))
 node.account.kill_process("zookeeper", allow_fail=False)

def clean_node(self, node):
 self.logger.info("Cleaning Zookeeper node %d on %s", self.idx(node), node.account.hostname)
 if self.alive(node):
 self.logger.warn("%s %s was still alive at cleanup time. Killing forcefully..." %
 (self.__class__.__name__, node.account))
 node.account.kill_process("zookeeper", clean_shutdown=False, allow_fail=True)
 node.account.ssh("rm -rf /mnt/zookeeper /mnt/zookeeper.properties /mnt/zk.log",
 allow_fail=False)

The stop_node method uses kill_process() to terminate the service process on the given node. If the remote command to terminate the process fails, kill_process() will raise an RemoteCommandError exception.

The clean_node method forcefully kills the process if it is still alive, and then removes persistent state leftover from testing. Make sure to properly cleanup the state to avoid test order dependency and flaky tests. You can assume complete control of the machine, so it is safe to delete an entire temporary working space and kill all java processes, etc.

Using Templates

Both Service and Test subclass TemplateRenderer that lets you render templates directly from strings or from files loaded from templates/ directory relative to the class. A template contains variables and/or expressions, which are replaced with values when a template is rendered. TemplateRenderer renders templates using Jinja2 [http://jinja.pocoo.org/docs/2.9/] template engine. A good use-case for templates is a properties file that needs to be passed to a service process. In New Service Example, the properties file is created by building a string and using it as contents as follows:

prop_file = """\n dataDir=%s\n clientPort=2181""" % self.DATA_DIR
for idx, node in enumerate(self.nodes):
 prop_file += "\n server.%d=%s:2888:3888" % (idx, node.account.hostname)
node.account.create_file(self.CONFIG_FILE, prop_file)

A template approach is to add a properties file in templates/ directory relative to the ZookeeperService class:

dataDir={{ DATA_DIR }}
clientPort=2181
{% for node in nodes %}
server.{{ loop.index }}={{ node.account.hostname }}:2888:3888
{% endfor %}

Suppose we named the file zookeeper.properties. The creation of the config file will look like this:

prop_file = self.render('zookeeper.properties')
node.account.create_file(self.CONFIG_FILE, prop_file)

Debug Tests

The test results go in results/<date>—<test_number>. For results from a particular test, look for results/<date>—<test_number>/test_class_name/<test_method_name>/ directory. The test_log.debug file will contain the log output from the python driver, and logs of services used in the test will be in service_name/node_name sub-directory.

If there is not enough information in the logs, you can re-run the test with --no-teardown argument.

ducktape dir/tests/my_test.py::TestA.test_a --no-teardown

This will run the test but will not kill any running processes or remove log files when the test finishes running. Then, you can examine the state of a running service or the machine when the service process is running by logging into that machine. Suppose you suspect a particular service being the cause of the test failure. You can find out which machine was allocated to that service by either looking at test_log.debug or at directory names under results/<date>—<test_number>/test_class_name/<test_method_name>/service_name/. It could be useful to add an explicit debug log to start_node method with a node ID and node’s hostname information for easy debugging:

def start_node(self, node):
 idx = self.idx(node)
 self.logger.info("Starting ZK node %d on %s", idx, node.account.hostname)

The log statement will look something like this:

[INFO - 2017-03-28 22:07:25,222 - zookeeper - start_node - lineno:50]: Starting ZK node 1 on worker1

If you are using Vagrant for example, you can then log into that node via:

vagrant ssh worker1

Use Logging

Distributed system tests can be difficult to debug. You want to add a lot of logging for debugging and tracking progress of the test. A good approach would be to log an intention of an operation with some useful information before any operation that can fail. It could be a good idea to use a higher logging level than you would in production so more info is available. For example, make your log levels default to DEBUG instead of INFO. Also, put enough information to a message of assert to help figure out what went wrong as well as log messages. Consider an example of testing ElasticSearch service:

res = es.search(index="test-index", body={"query": {"match_all": {}}})
self.logger.debug("result: %s" % res['hits'])
assert res['hits']['total'] == 1, "Expected total 1 hit, but got %d" % res['hits']['total']
for hit in res['hits']['hits']:
 assert 'kimchy’ == hit['_source']['author’], "Expected author kimchy but got %s" % hit['_source']['author']
 assert 'Elasticsearch: cool.' == hit['_source']['text’], "Expected text Elasticsearch: cool. but got %s" % hit['_source']['text’]

First, the tests outputs the result of a search, so that if any of the following assertions fail, we can see the whole result in test_log.debug. Assertion messages help to quickly see the difference in expected and retrieved results.

Fail early

Try to avoid a situation where a test fails because of an uncaught failure earlier in the test. Suppose we write a start_node method that does not check if the service starts successfully. The service fails to start, but we get a test failure indication that there was a problem querying the service. It would be much faster to debug the issue if the test failure pointed to the issue with starting the service. So make sure to add checks for operations that may fail, and fail the test earlier than later.

Flaky tests

Flaky tests are hard to debug due to their non-determinism, they waste time, and sometimes hide real bugs: developers tend to ignore those failures, and thus could miss real bugs. Flakiness can come from the test itself, the system it is testing, or the environmental issues.

Waiting on Conditions

A common cause of a flaky test is asynchronous wait on conditions. A test makes an asynchronous call and does not properly wait for the result of the call to become available before using it:

node.account.kill_process("zookeeper", allow_fail=False)
time.sleep(2)
assert not self.alive(node), “Expected Zookeeper service to stop”

In this example, the test terminates a zookeeper service via kill_process and then uses time.sleep to wait for it to stop. If terminating the process takes longer, the test will fail. The test may intermittently fail based on how fast a process terminates. Of course, there should be a timeout for termination to ensure that test does not run indefinitely. You could increase sleep time, but that also increases the test run length. A more explicit way to express this condition is to use wait_until() with a timeout:

node.account.kill_process("zookeeper", allow_fail=False)
wait_until(lambda: not self.alive(node),
 timeout_sec=5,
 err_msg="Timed out waiting for zookeeper to stop.")

The test will progress as soon as condition is met, and timeout ensures that the test does not run indefinitely if termination never ends.

Think carefully about the condition to check. A common source of issues is incorrect choice of condition of successful service start in start_node implementation. One way to check that a service starts successfully is to wait for some specific log output. However, make sure that this specific log message is always printed after the things run successfully. If there is still a chance that service may fail to start after the log is printed, this may cause race conditions and flaky tests. Sometimes it could be better to check if the service runs successfully by querying a service or checking some metrics if they are available.

Test Order Dependency

Make sure that your services properly cleanup the state in clean_node implementation. Failure to properly clean up the state can cause the next run of the test to fail or fail intermittently if other tests happen to clean same directories for example. One of the benefits of isolation that ducktape assumes is that you can assume you have complete control of the machine. It is ok to delete the entire working space. It is also safe to kill all java processes you can find rather than being more targeted. So, clean up aggressively.

Incorrect Assumptions

It is possible that assumptions about how the system works that we are testing are incorrect. One way to help debug this is to use more detailed comments why certain checks are made.

Tools for Managing Logs

Analyzing and matching up logs from a distributed service could be time consuming. There are many good tools for working with logs. Examples include http://lnav.org/, http://list.xmodulo.com/multitail.html, and http://glogg.bonnefon.org/.

Validating Ssh Issues

Ducktape supports running custom validators when an ssh error occurs, allowing you to run your own validation against a host.
this is done simply by running ducktape with the –ssh-checker-function, followed by the module path to your function, so for instance:

ducktape my-test.py --ssh-checker-function my.module.validator.validate_ssh

this function will take in the ssh error raised as its first argument, and the remote account object as its second.

API Doc

	Test

	Services

	Remote Account

	Clusters

	Template

Test

	
class ducktape.tests.test.Test(test_context, *args, **kwargs)

	Bases: ducktape.template.TemplateRenderer

Base class for tests.

	
__init__(test_context, *args, **kwargs)

	

	
compress_service_logs(node, service, node_logs)

	Compress logs on a node corresponding to the given service.

	Parameters

	
	node – The node on which to compress the given logs

	service – The service to which the node belongs

	node_logs – Paths to logs (or log directories) which will be compressed

	Returns

	a list of paths to compressed logs.

	
copy_service_logs(test_status)

	Copy logs from service nodes to the results directory.

If the test passed, only the default set will be collected. If the the test failed, all logs will be collected.

	
min_cluster_size()

	Returns the number of linux nodes which this test needs.

THIS METHOD IS DEPRECATED, and provided only for backwards compatibility.
Please implement min_cluster_spec instead.

	Returns

	An integer.

	
min_cluster_spec()

	Returns a specification for the minimal cluster we need to run this test.

This method replaces the deprecated min_cluster_size. Unlike min_cluster_size, it can handle
non-Linux operating systems.

In general, most Tests don’t need to override this method. The default implementation
seen here works well in most cases. However, the default implementation only takes into account
the services that exist at the time of the call. You may need to override this method if you add
new services during the course of your test.

	Returns

	A ClusterSpec object.

	
setup()

	Override this for custom setup logic.

	
teardown()

	Override this for custom teardown logic.

	
class ducktape.tests.test.TestContext(**kwargs)

	Bases: object

Wrapper class for state variables needed to properly run a single ‘test unit’.

	
__init__(**kwargs)

	
	Parameters

	
	session_context –

	cluster – the cluster object which will be used by this test

	module – name of the module containing the test class/method

	cls – class object containing the test method

	function – the test method

	file – file containing this module

	injected_args – a dict containing keyword args which will be passed to the test method

	cluster_use_metadata – dict containing information about how this test will use cluster resources

	
close()

	Release resources, etc.

	
copy(**kwargs)

	Construct a new TestContext object from another TestContext object
Note that this is not a true copy, since a fresh ServiceRegistry instance will be created.

	
description

	Description of the test, needed in particular for reporting.
If the function has a docstring, return that, otherwise return the class docstring or “”.

	
expected_cluster_spec

	The cluster spec we expect this test to consume when run.

	Returns

	A ClusterSpec object.

	
expected_num_nodes

	How many nodes of any type we expect this test to consume when run.

	Returns

	an integer number of nodes.

	
local_scratch_dir

	This local scratch directory is created/destroyed on the test driver before/after each test is run.

	
test_name

	The fully-qualified name of the test. This is similar to test_id, but does not include the session ID. It
includes the module, class, and method name.

Services

	
class ducktape.services.service.Service(context, num_nodes=None, cluster_spec=None, *args, **kwargs)

	Bases: ducktape.template.TemplateRenderer

Service classes know how to deploy a service onto a set of nodes and then clean up after themselves.

They request the necessary resources from the cluster,
configure each node, and bring up/tear down the service.

They also expose
information about the service so that other services or test scripts can
easily be configured to work with them. Finally, they may be able to collect
and check logs/output from the service, which can be helpful in writing tests
or benchmarks.

Services should generally be written to support an arbitrary number of nodes,
even if instances are independent of each other. They should be able to assume
that there won’t be resource conflicts: the cluster tests are being run on
should be large enough to use one instance per service instance.

	
__init__(context, num_nodes=None, cluster_spec=None, *args, **kwargs)

	Initialize the Service.

Note: only one of (num_nodes, cluster_spec) may be set.

	Parameters

	
	context – An object which has at minimum ‘cluster’ and ‘logger’ attributes. In tests, this
is always a TestContext object.

	num_nodes – An integer representing the number of Linux nodes to allocate.

	cluster_spec – A ClusterSpec object representing the minimum cluster specification needed.

	
allocate_nodes()

	Request resources from the cluster.

	
allocated

	Return True iff nodes have been allocated to this service instance.

	
clean()

	Clean up persistent state on each node - e.g. logs, config files etc.
Subclasses must override clean_node.

	
clean_node(node)

	Clean up persistent state on this node - e.g. service logs, configuration files etc.

	
close()

	Release resources.

	
cluster

	The cluster object from which this service instance gets its nodes.

	
free()

	Free each node. This ‘deallocates’ the nodes so the cluster can assign them to other services.

	
get_node(idx)

	ids presented externally are indexed from 1, so we provide a helper method to avoid confusion.

	
idx(node)

	Return id of the given node. Return -1 if node does not belong to this service.

idx identifies the node within this service instance (not globally).

	
local_scratch_dir

	This local scratch directory is created/destroyed on the test driver before/after each test is run.

	
logger

	The logger instance for this service.

	
run()

	Helper that executes run(), wait(), and stop() in sequence.

	
static run_parallel(*args)

	Helper to run a set of services in parallel. This is useful if you want
multiple services of different types to run concurrently, e.g. a
producer + consumer pair.

	
service_id

	Human-readable identifier (almost certainly) unique within a test run.

	
start()

	Start the service on all nodes.

	
start_node(node)

	Start service process(es) on the given node.

	
stop()

	Stop service processes on each node in this service.
Subclasses must override stop_node.

	
stop_node(node)

	Halt service process(es) on this node.

	
wait(timeout_sec=600)

	Wait for the service to finish.
This only makes sense for tasks with a fixed amount of work to do. For services that generate
output, it is only guaranteed to be available after this call returns.

	
wait_node(node, timeout_sec=None)

	Wait for the service on the given node to finish.
Return True if the node finished shutdown, False otherwise.

	
who_am_i(node=None)

	Human-readable identifier useful for log messages.

	
class ducktape.services.background_thread.BackgroundThreadService(context, num_nodes)

	Bases: ducktape.services.service.Service

	
__init__(context, num_nodes)

	

	
wait(timeout_sec=600)

	Wait no more than timeout_sec for all worker threads to finish.

raise TimeoutException if all worker threads do not finish within timeout_sec

Remote Account

	
class ducktape.cluster.remoteaccount.RemoteAccount(ssh_config, externally_routable_ip=None, logger=None, ssh_exception_checks=[])

	Bases: ducktape.utils.http_utils.HttpMixin

RemoteAccount is the heart of interaction with cluster nodes,
and every allocated cluster node has a reference to an instance of RemoteAccount.

It wraps metadata such as ssh configs, and provides methods for file system manipulation and shell commands.

Each operating system has its own RemoteAccount implementation.

	
__init__(ssh_config, externally_routable_ip=None, logger=None, ssh_exception_checks=[])

	

	
alive(pid)

	Return True if and only if process with given pid is alive.

	
close()

	Close/release any outstanding network connections to remote account.

	
copy_between(src, dest, dest_node)

	Copy src to dest on dest_node

	Parameters

	
	src – Path to the file or directory we want to copy

	dest – The destination path

	dest_node – The node to which we want to copy the file/directory

Note that if src is a directory, this will automatically copy recursively.

	
java_pids(match)

	Get all the Java process IDs matching ‘match’.

	Parameters

	match – The AWK expression to match

	
kill_java_processes(match, clean_shutdown=True, allow_fail=False)

	Kill all the java processes matching ‘match’.

	Parameters

	
	match – The AWK expression to match

	clean_shutdown – True if we should shut down cleanly with SIGTERM;
false if we should shut down with SIGKILL.

	allow_fail – True if we should throw exceptions if the ssh commands fail.

	
monitor_log(log)

	Context manager that returns an object that helps you wait for events to
occur in a log. This checks the size of the log at the beginning of the
block and makes a helper object available with convenience methods for
checking or waiting for a pattern to appear in the log. This will commonly
be used to start a process, then wait for a log message indicating the
process is in a ready state.

See LogMonitor for more usage information.

	
remove(path, allow_fail=False)

	Remove the given file or directory

	
wait_for_http_service(port, headers, timeout=20, path='/')

	Wait until this service node is available/awake.

	
class ducktape.cluster.remoteaccount.LogMonitor(acct, log, offset)

	Bases: object

Helper class returned by monitor_log. Should be used as:

with remote_account.monitor_log("/path/to/log") as monitor:
 remote_account.ssh("/command/to/start")
 monitor.wait_until("pattern.*to.*grep.*for", timeout_sec=5)

to run the command and then wait for the pattern to appear in the log.

	
__init__(acct, log, offset)

	

	
wait_until(pattern, **kwargs)

	Wait until the specified pattern is found in the log, after the initial
offset recorded when the LogMonitor was created. Additional keyword args
are passed directly to ducktape.utils.util.wait_until

	
class ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount(*args, **kwargs)

	Bases: ducktape.cluster.remoteaccount.RemoteAccount

	
__init__(*args, **kwargs)

	

	
get_external_accessible_network_devices()

	gets the subset of devices accessible through an external conenction

	
get_network_devices()

	Utility to get all network devices on a linux account

	
local

	Returns True if this ‘remote’ account is probably local.
This is an imperfect heuristic, but should work for simple local testing.

	
class ducktape.cluster.windows_remoteaccount.WindowsRemoteAccount(*args, **kwargs)

	Bases: ducktape.cluster.remoteaccount.RemoteAccount

Windows remote accounts are currently only supported in EC2. See _setup_winrm() for how the WinRM password
is fetched, which is currently specific to AWS.

The Windows AMI needs to also have an SSH server running to support SSH commands, SCP, and rsync.

	
__init__(*args, **kwargs)

	

Clusters

	
class ducktape.cluster.cluster.Cluster

	Bases: object

Interface for a cluster – a collection of nodes with login credentials.
This interface doesn’t define any mapping of roles/services to nodes. It only interacts with some underlying
system that can describe available resources and mediates reservations of those resources.

	
__init__()

	

	
all()

	Return a ClusterSpec object describing all nodes.

	
alloc(cluster_spec)

	Allocate some nodes.

	Parameters

	cluster_spec – A ClusterSpec describing the nodes to be allocated.

	Throws InsufficientResources

	If the nodes cannot be allocated.

	Returns

	Allocated nodes spec

	
available()

	Return a ClusterSpec object describing the currently available nodes.

	
do_alloc(cluster_spec)

	Subclasses should implement actual allocation here.

	Parameters

	cluster_spec – A ClusterSpec describing the nodes to be allocated.

	Throws InsufficientResources

	If the nodes cannot be allocated.

	Returns

	Allocated nodes spec

	
free(nodes)

	Free the given node or list of nodes

	
used()

	Return a ClusterSpec object describing the currently in use nodes.

	
class ducktape.cluster.vagrant.VagrantCluster(*args, **kwargs)

	Bases: ducktape.cluster.json.JsonCluster

An implementation of Cluster that uses a set of VMs created by Vagrant. Because we need hostnames that can be
advertised, this assumes that the Vagrant VM’s name is a routeable hostname on all the hosts.

	If cluster_file is specified in the constructor’s kwargs (i.e. passed via command line argument –cluster-file)
- If cluster_file exists on the filesystem, read cluster info from the file
- Otherwise, retrieve cluster info via “vagrant ssh-config” from vagrant and write cluster info to cluster_file

	Otherwise, retrieve cluster info via “vagrant ssh-config” from vagrant

	
__init__(*args, **kwargs)

	

	
class ducktape.cluster.localhost.LocalhostCluster(*args, **kwargs)

	Bases: ducktape.cluster.cluster.Cluster

A “cluster” that runs entirely on localhost using default credentials. This doesn’t require any user
configuration and is equivalent to the old defaults in cluster_config.json. There are no constraints
on the resources available.

	
__init__(*args, **kwargs)

	

	
class ducktape.cluster.json.JsonCluster(cluster_json=None, *args, **kwargs)

	Bases: ducktape.cluster.cluster.Cluster

An implementation of Cluster that uses static settings specified in a cluster file or json-serializeable dict

	
__init__(cluster_json=None, *args, **kwargs)

	Initialize JsonCluster

	JsonCluster can be initialized from:

	
	a json-serializeable dict

	a “cluster_file” containing json

	Parameters

	
	cluster_json – a json-serializeable dict containing node information. If cluster_json is None,
load from file

	(optional) (cluster_file) – Overrides the default location of the json cluster file

Example json with a local Vagrant cluster:

{
 "nodes": [
 {
 "externally_routable_ip": "192.168.50.151",

 "ssh_config": {
 "host": "worker1",
 "hostname": "127.0.0.1",
 "identityfile": "/path/to/private_key",
 "password": null,
 "port": 2222,
 "user": "vagrant"
 }
 },
 {
 "externally_routable_ip": "192.168.50.151",

 "ssh_config": {
 "host": "worker2",
 "hostname": "127.0.0.1",
 "identityfile": "/path/to/private_key",
 "password": null,
 "port": 2223,
 "user": "vagrant"
 }
 }
]
}

	
static make_remote_account(ssh_config, *args, **kwargs)

	Factory function for creating the correct RemoteAccount implementation.

Template

	
class ducktape.template.TemplateRenderer

	Bases: object

	
render(path, **kwargs)

	Render a template loaded from a file.
template files referenced in file f should be in a sibling directory of f called “templates”.

	Parameters

	
	path – path, relative to the search paths, to the template file

	kwargs – optional override parameters

	Returns

	the rendered template

	
render_template(template, **kwargs)

	Render a template using the context of the current object, optionally with overrides.

	Parameters

	
	template – the template to render, a Template or a str

	kwargs – optional override parameters

	Returns

	the rendered template

Misc

Developer Install

If you are are a ducktape developer, consider using the develop command instead of install. This allows you to make code changes without constantly reinstalling ducktape (see http://stackoverflow.com/questions/19048732/python-setup-py-develop-vs-install for more information):

cd ducktape
python setup.py develop

To uninstall:

cd ducktape
python setup.py develop --uninstall

Unit Tests

You can run the tests with code coverage and style check using tox [https://tox.readthedocs.io/en/latest/]:

tox

Alternatively, you can activate the virtualenv and run pytest and flake8 directly:

source ~/.virtualenvs/ducktape/bin/activate
pytest tests
flake8

Windows

Ducktape support Services that run on Windows, but only in EC2.

When a Service requires a Windows machine, AWS credentials must be configured on the machine running ducktape.

Ducktape uses the boto3 [https://aws.amazon.com/sdk-for-python/] Python module to connect to AWS. And boto3 support many different configuration options [https://boto3.readthedocs.io/en/latest/guide/configuration.html#guide-configuration]

Here’s an example bare minimum configuration using environment variables:

export AWS_ACCESS_KEY_ID="ABC123"
export AWS_SECRET_ACCESS_KEY="secret"
export AWS_DEFAULT_REGION="us-east-1"

The region can be any AWS region, not just us-east-1.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (ducktape.cluster.cluster.Cluster method)

 	(ducktape.cluster.json.JsonCluster method)

 	(ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount method)

 	(ducktape.cluster.localhost.LocalhostCluster method)

 	(ducktape.cluster.remoteaccount.LogMonitor method)

 	(ducktape.cluster.remoteaccount.RemoteAccount method)

 	(ducktape.cluster.vagrant.VagrantCluster method)

 	(ducktape.cluster.windows_remoteaccount.WindowsRemoteAccount method)

 	(ducktape.services.background_thread.BackgroundThreadService method)

 	(ducktape.services.service.Service method)

 	(ducktape.tests.test.Test method)

 	(ducktape.tests.test.TestContext method)

A

 	
 	alive() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	all() (ducktape.cluster.cluster.Cluster method)

 	alloc() (ducktape.cluster.cluster.Cluster method)

 	
 	allocate_nodes() (ducktape.services.service.Service method)

 	allocated (ducktape.services.service.Service attribute)

 	available() (ducktape.cluster.cluster.Cluster method)

B

 	
 	BackgroundThreadService (class in ducktape.services.background_thread)

C

 	
 	clean() (ducktape.services.service.Service method)

 	clean_node() (ducktape.services.service.Service method)

 	close() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	(ducktape.services.service.Service method)

 	(ducktape.tests.test.TestContext method)

 	Cluster (class in ducktape.cluster.cluster)

 	
 	cluster (ducktape.services.service.Service attribute)

 	cluster() (in module ducktape.mark.resource)

 	compress_service_logs() (ducktape.tests.test.Test method)

 	copy() (ducktape.tests.test.TestContext method)

 	copy_between() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	copy_service_logs() (ducktape.tests.test.Test method)

D

 	
 	description (ducktape.tests.test.TestContext attribute)

 	
 	do_alloc() (ducktape.cluster.cluster.Cluster method)

E

 	
 	expected_cluster_spec (ducktape.tests.test.TestContext attribute)

 	
 	expected_num_nodes (ducktape.tests.test.TestContext attribute)

F

 	
 	free() (ducktape.cluster.cluster.Cluster method)

 	(ducktape.services.service.Service method)

G

 	
 	get_external_accessible_network_devices() (ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount method)

 	
 	get_network_devices() (ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount method)

 	get_node() (ducktape.services.service.Service method)

I

 	
 	idx() (ducktape.services.service.Service method)

 	
 	ignore() (in module ducktape.mark)

J

 	
 	java_pids() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	
 	JsonCluster (class in ducktape.cluster.json)

K

 	
 	kill_java_processes() (ducktape.cluster.remoteaccount.RemoteAccount method)

L

 	
 	LinuxRemoteAccount (class in ducktape.cluster.linux_remoteaccount)

 	local (ducktape.cluster.linux_remoteaccount.LinuxRemoteAccount attribute)

 	local_scratch_dir (ducktape.services.service.Service attribute)

 	(ducktape.tests.test.TestContext attribute)

 	
 	LocalhostCluster (class in ducktape.cluster.localhost)

 	logger (ducktape.services.service.Service attribute)

 	LogMonitor (class in ducktape.cluster.remoteaccount)

M

 	
 	make_remote_account() (ducktape.cluster.json.JsonCluster static method)

 	matrix() (in module ducktape.mark)

 	
 	min_cluster_size() (ducktape.tests.test.Test method)

 	min_cluster_spec() (ducktape.tests.test.Test method)

 	monitor_log() (ducktape.cluster.remoteaccount.RemoteAccount method)

P

 	
 	parametrize() (in module ducktape.mark)

R

 	
 	RemoteAccount (class in ducktape.cluster.remoteaccount)

 	remove() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	render() (ducktape.template.TemplateRenderer method)

 	
 	render_template() (ducktape.template.TemplateRenderer method)

 	run() (ducktape.services.service.Service method)

 	run_parallel() (ducktape.services.service.Service static method)

S

 	
 	Service (class in ducktape.services.service)

 	service_id (ducktape.services.service.Service attribute)

 	setup() (ducktape.tests.test.Test method)

 	
 	start() (ducktape.services.service.Service method)

 	start_node() (ducktape.services.service.Service method)

 	stop() (ducktape.services.service.Service method)

 	stop_node() (ducktape.services.service.Service method)

T

 	
 	teardown() (ducktape.tests.test.Test method)

 	TemplateRenderer (class in ducktape.template)

 	
 	Test (class in ducktape.tests.test)

 	test_name (ducktape.tests.test.TestContext attribute)

 	TestContext (class in ducktape.tests.test)

U

 	
 	used() (ducktape.cluster.cluster.Cluster method)

V

 	
 	VagrantCluster (class in ducktape.cluster.vagrant)

W

 	
 	wait() (ducktape.services.background_thread.BackgroundThreadService method)

 	(ducktape.services.service.Service method)

 	wait_for_http_service() (ducktape.cluster.remoteaccount.RemoteAccount method)

 	
 	wait_node() (ducktape.services.service.Service method)

 	wait_until() (ducktape.cluster.remoteaccount.LogMonitor method)

 	who_am_i() (ducktape.services.service.Service method)

 	WindowsRemoteAccount (class in ducktape.cluster.windows_remoteaccount)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Distributed System Integration & Performance Testing Library

 		
 Install

 		
 Test Clusters

 		
 Cluster Specifications

 		
 Run Tests

 		
 Running Tests

 		
 Options

 		
 Configuration File

 		
 Output

 		
 Create New Tests

 		
 Writing ducktape Tests

 		
 Test Parameters

 		
 Logging

 		
 New test example

 		
 Create New Services

 		
 Writing ducktape services

 		
 New Service Example

 		
 Using Templates

 		
 Debug Tests

 		
 Use Logging

 		
 Fail early

 		
 Flaky tests

 		
 Waiting on Conditions

 		
 Test Order Dependency

 		
 Incorrect Assumptions

 		
 Tools for Managing Logs

 		
 Validating Ssh Issues

 		
 API Doc

 		
 Test

 		
 Services

 		
 Remote Account

 		
 Clusters

 		
 Template

 		
 Misc

 		
 Developer Install

 		
 Unit Tests

 		
 Windows

_static/up-pressed.png

_static/up.png

